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CHAPTER 7

Information-based modeling of event-related brain
dynamics

Julie Onton! and Scott Makeig

Swartz Center for Computational Neuroscience, University of California at San Diego, La Jolla, CA 92093-0961, USA

Abstract: We discuss the theory and practice of applying independent component analysis (ICA) to
electroencephalographic (EEG) data. ICA blindly decomposes multi-channel EEG data into maximally
independent component processes (ICs) that typically express either particularly brain generated EEG
activities or some type of non-brain artifacts (line or other environmental noise, eye blinks and other eye
movements, or scalp or heart muscle activity). Each brain and non-brain IC is identified with an activity
time course (its ‘activation’) and a set of relative strengths of its projections (by volume conduction) to the
recording electrodes (its ‘scalp map’). Many non-articraft IC scalp maps strongly resemble the projection of
a single dipole, allowing the location and orientation of the best-fitting equivalent dipole (or other source
model) to be easily determined. In favorable circumstances, ICA decomposition of high-density scalp EEG
data appears to allow concurrent monitoring, with high time resolution, of separate EEG activities in
twenty or more separate cortical EEG source areas. We illustrate the differences between ICA and tra-
ditional approaches to EEG analysis by comparing time courses and mean event related spectral
perturbations (ERSPs) of scalp channel and IC data. Comparing IC activities across subjects necessitates
clustering of similar Ics based on common dynamic and/or spatial features. We discuss and illustrate such a
component clustering strategy. In sum, continued application of ICA methods in EEG research should
continue to yield new insights into the nature and role of the complex macroscopic cortical dynamics
captured by scalp electrode recordings.

Keywords: independent component analysis (ICA); event-related potentials (ERPs); event-related spectral
perturbation (ERSP); EEG source localization; independent component (IC) clustering

Introduction

In the past decade, an explosion of advances in
human brain imaging techniques have pushed
analysis of metabolic or blood-oxygenation levels
in the brain to the forefront of human neurosci-
ence research. In contrast, the popularity of elect-
roencepholography (EEG) has waned, largely
because the majority of EEG studies still analyze
average electrical potential time series from single

scalp electrodes which, in isolation, reveal little
about the number, type and spatial distribution of
the brain potentials that generate them. By basic
biophysics, if temporally coherent activity in any
brain area creates far-field potentials on the scalp,
these potentials are distributed widely, by passive
volume conduction, across the scalp surface. EEG
signals arriving at each electrode are the sum of
activities in all such EEG source areas, as well as
electrical artifacts from muscles, eyes, electrodes,
movements, and the electrical environment.

An additional cause of complexity for
electromagnetic brain imaging, as compared with!Corresponding author.E-mail: julie@sccn.ucsd.edu
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metabolic imaging, is that electromagnetic field
activity within a cortical patch has a net source
orientation as well as location. Typical differences
in cortical folding patterns between individual
brains may therefore produce differences in the
orientations of spatially equivalent source areas,
producing large differences in their projections to
the scalp electrodes.

For this reason, comparing EEG activities at
equivalent scalp locations across subjects may not
be as accurate as comparing hemodynamic activ-
ities of equivalent 3-D locations in their magnetic
resonance (MR) images. The mixture of source
activities reaching a given scalp location, e.g., the
vertex (Cz), in different subjects may depend on
the relative amplitudes, distances, and orientations
of subject cortical source areas across most of the
cortex. Therefore, a first signal processing step in
using scalp EEG (or its magnetic equivalent, mag-
netoencephalographic or MEG) data for dynamic
brain imaging should be able to spatially filter the
recorded data so that the outputs of each spatial
filter may be identified with activity in a particular
cortical source area or domain.

Unfortunately, the widespread projection of
source activities across the scalp surface also
means that the ‘EEG inverse problem’ of locating
the brain sources of the recorded data is mathe-
matically ill-posed and is in fact not resolvable
without additional constraints and assumptions.
The EEG inverse problem is even more difficult
than the corresponding inverse problem for MEG
data, since propagation of electrical potential
through the brain by volume conduction is in part
anisotropic (meaning it varies with the direction of
propagation). However, direct non-invasive meas-
ures of this anisotropy are not currently available.
For these reasons, as well as the considerable
computational complexity involved, adequate
brain location-based spatial filtering of EEG sig-
nals has been considered difficult to impossible,
leading to the widespread but largely inaccurate
perception that EEG brain imaging is doomed to
having low spatial resolution.

In recent years, an alternative approach has
been developed for generating spatial filters that
allow simultaneous monitoring of field activities
in different cortical areas, using a recent signal

processing approach known as independent com-
ponent analysis (ICA) (Comon, 1994; Bell and
Sejnowski, 1995). Eleven years ago, the senior au-
thor and colleagues first discovered that ICA is a
useful tool for decomposing EEG signals into
maximally independent activity patterns that in
many cases are compatible with activity in a single
active cortical area (Makeig et al., 1996).

The ICA approach to dynamic brain imaging is
to separate the independent EEG activities in each
subject’s data, not by direct spatial filtering for
activities generated in a set of pre-defined cortical
locations, but by using the information content of
the data itself to separate portions of the recorded
scalp data from each active cortical and artifact
source area based on the deceptively simple but
statistically and physiologically plausible assump-
tion that over time, these activities should be
nearly independent of each other.

The major advantage of this approach is that
the locally coherent activity constituting a single
EEG source will be grouped together into a single
independent component (IC) that includes its pro-
jections to all the scalp channels, while the activ-
ities of unrelated EEG sources will be rejected
from this IC and isolated into other ICs. In this
way, under favorable circumstances ICA will
transform the recorded high-density scalp data
into a set of cortical and artifact source recordings
— thereby discovering what distinct signals are
contained in the data before asking directly where
these signals are generated.

This indirect or even (to some) backwards-seem-
ing approach to spatial source filtering has made
the ICA approach difficult to accept for some re-
searchers with physical science backgrounds. On
the other hand researchers accustomed to using
computationally simpler measures of activity at
single scalp electrodes might balk at the apparent
increase in complexity of ICA-based analysis. Al-
though skepticism between (at least) these two
classes of researchers may have slowed widespread
investigation of the utility of ICA for EEG anal-
ysis, more and more students and investigators are
taking advantage of freely available and commer-
cial software tools for performing ICA analysis, in
the process understanding more of its benefits and
pitfalls. Here, we first review the theory, promise,
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and practical use of ICA decomposition of EEG
data, then exemplify its benefits for event-related
time/frequency analysis. Finally, we will describe
an important problem ICA poses the identifying of
equivalent component processes across subjects
and sessions. We discuss approaches to solving
this problem by ICA component clustering.

ICA history

The concept of ICA was first developed in the field
of signal processing around 1990 (Comon, 1994)
as part of a larger class of ‘blind source separation’
problems that aim to separate individual source
signals from multi-dimensional data in which they
are mixed. ICA applied to high-density scalp EEG
data produces a strictly linear and invertible de-
composition of the data, meaning that the activity
of every resulting IC is simply a weighted sum of
the signals recorded at all of the input scalp chan-
nels, and every scalp channel signal is simply a
weighted sum of the projected activities of all the
ICs. Technically, ICA finds a set of fixed spatial
filters that together constitute the most distinct
(i.e., temporally near-independent) signals availa-
ble in the input data.

Currently, several related Matlab (The Math-
works, Inc.) algorithms for performing ICA are
readily available on the internet. Several related
algorithms for performing ICA have been devel-
oped for Matlab (The Mathworks, Inc.) which are
readily available on the internet. These include
JADE (Cardoso and Laheld, 1996), infomax ICA
(Bell and Sejnowski, 1995), and so-called FastICA
(Hyvärinen et al., 2001), as well as variants of
second-order blind identification (SOBI)
(Molgedey and Schuster, 1994) that also factor in
relationships between multiple time points using
autoregressive models. We have found that
infomax ICA, in particular, gives reliable results
for data of sufficient quantity and quality having
almost any number of channels.

In its original formulation, infomax ICA could
only find sources that have super-Gaussian activity
distributions, meaning roughly that source
processes are only intermittently active. Over suffi-
cient time, this fairly well describes most EEG

phenomena. However, ‘extended’ mode infomax,
introduced by Lee et al. (1999), can also learn
filters for sources such as line noise that have sub-
Gaussian activity distributions (roughly speaking,
activities that are mostly ‘on’). This may be im-
portant when EEG data are obscured by (sub-
Gaussian) 50 or 60-Hz line noise from environ-
mental AC power sources. Matlab and binary im-
plementations of infomax ICA, in particular, as
well as many other tools for analyzing EEG data
with this or other ICA algorithms, are freely
available in the open source EEGLAB analysis
programming environment (http://www.sccn.
ucsd.edu/eeglab).

In our hands, infomax ICA produces useful re-
sults from decomposition of EEG datasets with
31–256 channels. Decomposing data with fe
wer channels is also possible and should be use-
ful for some purposes. Below, we compare some
results of ICA decomposition with results of tra-
ditional scalp channel analysis to demonstrate the
promise of ICA methods for EEG research.

ICA theory

ICA model assumptions

A general and physiologically plausible assump-
tion underlying most EEG analysis is that most of
the far-field potentials detected at the scalp are
generated not in the scalp itself, but within spatial
domains (or most simply, patches) of similarly
oriented cortical pyramidal neurons. EEG record-
ings are time series of measured potential differ-
ences between two scalp electrodes, usually
thought of as potential differences between an ‘ac-
tive’ electrode and a second (‘passive’) reference
electrode — though in fact both electrodes are
equally receptive to nearly all cortical and artifact
source signals.

A given cortical patch can only produce a far-
field potential and thus become an EEG source
domain, however, if the local fields surrounding its
pyramidal cells become partially (not necessarily
completely) synchronized. There are several
biophysical properties of the brain that encourage
such synchronization. These include inherent
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rhythmic proclivities of pyramidal and other cor-
tical cells, the high-speed, non-synaptic, electro-
tonic gap junction connections between (mainly)
non-pyramidal inhibitory cells, bidirectional cou-
pling between inhibitory and excitatory (including
pyramidal) cells, and between cortex and thala-
mus. However, both the strength and frequency
content of the local synchronization is highly var-
iable and may not normally have sufficient coher-
ency and/or may not extend over a sufficient area
to produce appreciable far-field scalp potentials.
Many biophysical systems and properties modu-
late the emergence and time course of local-field
synchronization. As a result of all this physiolog-
ical complexity, EEG signals themselves have
high-spatiotemporal complexity. The simple bio-
physical fact remains, however, that potentials re-
corded between any electrode pair will sum
activities from nearly all the active cortical EEG
source domains as well as from nearly all the active
artifact signal sources.

Temporally, EEG signals are comparatively wide
band (at least 1-100 Hz, or more than seven octaves
1–50Hz, more than six-octaves) and highly variable
in amplitude, frequency content, and time course.
Recent studies have even reported that amplitude
modulation of the posterior resting alpha activity
exhibits self-similar or fractal complexity over many
octaves (seconds to hours) (Linkenkaer-Hansen et
al., 2004). In addition to exhibiting complex pat-
terns of amplitude modulation, EEG signals often
exhibit both small frequency shifts and large fre-
quency jumps — phenomenally (if not functionally)
akin to a European driver up- and down-shifting
while negotiating tight corners on a mountain road
(Onton et al., 2005). The static ICA modeling dis-
cussed in this chapter does not itself attempt to
model the temporal properties of EEG source sig-
nals. Here, we focus on specific examples of EEG
processes and dynamics revealed by ICA-based
spatial filtering.

The spatially static ICA model discussed here
assumes that the (‘far-field’) activities recorded at
the scalp are produced in cortical EEG source do-
mains that project near-instantly to the scalp elec-
trodes via volume conduction. This means that
signals recorded at scalp electrodes are the sum of
potentials originating in nearly all cortical and ar-

tifact source domains. For electrical frequencies in
the EEG range, the basic ICA assumptions that
volume conduction is linear and practically instan-
taneous are confirmed by biophysics (Nunez and
Srinivasan, 2005). Thus, scalp electrode signals can
be modeled as instantaneous linear mixtures of
cortical source plus non-brain artifact signals. The
mechanisms by which the local synchronies appear
in the cortical source domains and are modulated
across time are of course highly non-linear. ICA
only seeks to cancel the volume conduction and
linear summation of distinct cortical (plus artifact)
signals at the scalp electrodes — opening the prob-
lem of characterizing the (highly non-linear) gener-
ation and modulation of the EEG source activities
themselves to further analysis.

To separate EEG source signals, ICA makes a
key assumption: that the far-field signals produced
by the cortical and non-cortical EEG sources are
temporally distinct and, over sufficient input data,
near temporally independent of one another. Is
this a physiologically plausible assumption? Sev-
eral factors suggest that in many cases cortical and
artifactual source signals may indeed be nearly in-
dependent. It is important to realize, first, that es-
tablishing the absolute independence of a number
of signals would require infinite data. Thus, inde-
pendence, measured by any approximation always
means near independence. That said, why should
the far-field signals produced by different cortical
and artifactual sources be near independent?

A simple constraint on cortical signal depend-
ence comes from cortical connectivity, which is
very highly weighted toward short (o500 mm)
connections. The largest class of inhibitory cells
in cortex, for example, has only short-range con-
nections (Budd and Kisvarday, 2001). Thus, sync-
hrony (or partial synchrony) between local-field
activities should very likely spread through a con-
tiguous cortical area, rather than jumping between
distant and very weakly connected cortical terri-
tories. In fact, this is generally what has been ob-
served in recordings from closely-spaced cortical
electrode and optical grids (Arieli et al., 1996;
Freeman, 2004a).

Finally, the spatially static ICA model assumes
that the cortical domains or patches, as well as the
artifact sources that together constitute EEG
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‘sources,’ remain spatially fixed over time and
therefore project to the scalp channels with fixed
weights or proportions. Most likely, the synchrony
of distributed field activity across each source do-
main is only approximate. For example, invasive
optical and electrical recordings using closely
spaced sensors reveal moving sub-millimeter scale
potential gradients with traveling wave patterns
(Arieli et al., 1996), leading some to speculate that
traveling waves occur regularly in cortex at larger
spatial scales. However, if the cortical ‘patch’ that
produces a synchronous far-field EEG source sig-
nal is on the centimeter square scale, progressive
or radially expanding traveling wave activity
(Freeman, 2004a) within the source domain will
produce a signal that appears nearly spatially con-
stant on the scalp.

For example, consider Freeman’s model of EEG
source dynamics, based on his observations of
mammal brains with small (sub-millimeter spaced)
electrode grids, of circular wave patterns that
spread across small areas of cortex like pond rip-
ples produced by throwing a small rock into a
pond (Freeman, 2004b). What field dynamics on
the scalp should be produced by such activity ac-
tive at, e.g., 10Hz? At a nominal traveling velocity
of 2m/s, and assuming a cortical domain diameter
of as much as 3 cm, the 10-Hz phase difference
between the focal center of the ‘pond rippling’
potentials and the edge of the active ‘ripple’ area
(1.5 cm from the center) would be only

1:5 cm

0:002 m=ms! 100 cm=m
=100 ms=cycle

! 360"=cycle ¼ 27"

Thus, the outer edge of the pond-ripple pattern
would lead (or follow) the center by less than a
13th of a 10-Hz cycle, and mean local-field poten-
tials within the patch (and at the scalp electrodes)
would change from positive to negative and back
again nearly synchronously. Unless the cortical
domain involved were (a) quite close to the skull
and (b) folded (e.g., straddling the edge of a
sulcus), the projection pattern on the scalp would
be very difficult to distinguish from the far-field
potential of a cortical source domain behaving as
an ideal, fully-synchronous cortical source. Thus,

for resolving signals from most centimeter-scale
source domains similar to those observed by Free-
man, ICA may indeed be adequate, at least for
EEG frequencies lower than the (30-Hz and
above) gamma band. However, more advanced
ICA approaches including complex ICA (ICA
performed on Fourier or wavelet transformed
EEG data) might indeed be able to recover, in
some cases, evidence of near centimeter-scale po-
tential flow patterns within individual cortical al-
pha source domains (Anemueller et al., 2003).

Certain macroscopic EEG phenomena are also
known to exhibit large-scale traveling wave prop-
erties — including epileptic seizures, slow-spreading
depressions associated with migraine headaches
(Lauritzen, 1994), and sleep spindles (Massimini et
al., 2004). At best, ICA can only model such phe-
nomena as active within a component subspace,
i.e., a set of components each accounting for a
spatial (and temporal) phase of the moving activity
pattern. One can think of individual component
activities in such cases as ‘overlapping movie
frames’ that, in combination, can capture spatially
shifting phenomena that reoccur in the data. In
many cases, the resulting separation of the moving
signal into a relevant component subspace separate
from the near-independent activities of other, spa-
tially static EEG sources may be useful for many
analysis purposes. There are, however, many pos-
sible extensions of the static ICA model to more
general blind source separation methods that may
also be able to identify and isolate particular sorts
of spatially fluid patterns in scalp EEG data — if
and when the particular moving-source model be-
ing used does in fact fit the phenomena of interest
(Anemueller et al., 2003).

Questions about spatial EEG source stability
also extend over longer time scales and, as well,
across changes in task and state. In general, it is
not known if in the normal awake brain, major
sources of synchronized activity tend to move be-
tween cortical source domains, or whether cortical
source domains slowly change shape or location,
e.g., during performance of a single task. The
relative stability of the results of infomax ICA de-
composition applied to waking EEG data, both
within and between subjects (Makeig et al.,
2002, 2004b; Onton et al., 2005) suggests that
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many major sources of EEG activity are suffi-
ciently spatially stable to be reproducibly resolved
into temporally near-independent sources with
fixed scalp maps.

Preliminary analysis, however, suggests that the
set of cortical source domains separated by ICA
may well change when subjects perform a new task
(Onton and Makeig, 2005). Nonetheless, the spa-
tially static ICA model, applied to data from two
tasks performed consecutively in one session,
might still find components common to both task
periods, weighting their activities during each task
period appropriately. In summary, the subject of
spatial non-stationarity of EEG cortical source
domains is still a largely open, interesting, and
potentially important frontier of EEG research.

ICA model basics

The data submitted to ICA are simply the EEG
channel recordings arranged in a matrix of n
channels (rows) by t time points (columns). Unlike
direct spatial filtering methods, no channel loca-
tion information is used in the analysis. ICA per-
forms a blind separation of the data matrix (X)
based only on the criterion that resulting source
time courses (U) are maximally independent. Spe-
cifically, ICA finds a component ‘unmixing’ matrix
(W) that, when multiplied by the original data (X),
yields the matrix (U) of IC time courses.

U ¼ WX (1)

where X and U are n! t matrices, and W is
n! n. By simple matrix algebra, Eq. (1) implies
that

X ¼ W$1U (2)

Here, W$1 (the inverse of W) is the n! n com-
ponent ‘mixing’ matrix whose columns contain the
relative weights with which the component pro-
jects to each of the scalp channels, i.e., the IC scalp
map. The portion of the original data (X) that
forms the ith IC (Xi) is the (outer) product of two
vectors, the ith column of the mixing matrix, W$1,
and the ith row of U,

Xi ¼ W$1
i Ui (3)

and the whole data (X) are the sum of the ICs (Xi)

X ¼
X

Xi where i ¼ 1; 2; . . . n (4)

Again, each column of the (W$1) mixing matrix
represents, for a single-component source, the rel-
ative projection weight at each electrode. Mapping
these weights to corresponding electrodes on a car-
toon head model allows visualization of the scalp
projection or scalp map of each source. The source
locations of the components are presumed to be
stationary for the duration of the training data.
That is, the brain source locations and projection
maps (W$1) are assumed to be spatially fixed, while
their ‘activations’ (U) reveal their activity time
courses throughout the input data. Thus, the IC
activations (U) can be regarded as the EEG wave-
forms of single sources, although obtaining their
actual amplitudes at the scalp channels requires
multiplication by the inverse of the unmixing ma-
trix (W$1) to return to microvolt units.

Neither the IC scalp maps nor the IC activations
are themselves in original recorded units. Rather,
the original activity units (mV) and polarities
(+/$) are distributed between the two factors —
the IC scalp map and activation time series. For
example, reversing the polarities of the activation
and inverse weight matrices, then back projecting
by multiplying these two matrices (as in Eq. (3)
above) recovers the original component activities
in their native microvolt units. Thus, neither the
sign of the scalp maps nor the sign of the activat-
ions are meaningful in themselves, but it is their
product that determines the sign of the potential
accounted for at each scalp channel. However, IC
activation magnitudes may be normalized by mul-
tiplying each by the root-mean square (RMS) am-
plitude of the corresponding IC scalp map. The
activation units are then RMS microvolts across
the scalp array.

The style of ICA decomposition considered here
is said to be complete, i.e., a decomposition in
which the number of ICA components recovered is
the same as the number of channel inputs. Thus,
30-channel data will be decomposed by ICA into
30 ICs, whereas 60-channel data will be decom-
posed into 60 ICs. Methods for overcomplete ICA
decomposition also exists, though these require
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additional assumptions. Frequently asked ques-
tions about ICA include: (1) are there really only a
fixed number of data sources? (2) What are the
effects of recording and decomposing different
numbers of data channels? Although full answers
to these questions are mathematically difficult and
possibly intractable, in general the number of
near-independent brain sources of EEG data
should theoretically be nearly unlimited, although
our power to resolve them from any fixed number
of scalp channels is limited.

Results of ICA decomposition of high-density
(e.g., 256-channel) data acquired from normal
subjects during performance of cognitive tasks
suggest that some dozens of distinct EEG sources
are large and/or distinct enough to be separated
into ICs with physiologically interpretable scalp
maps and activations. The remainder of the (e.g.,
200+) ICs found by ICA in such data must be
either ICs that clearly account for non-brain arti-
facts, or else mixtures of lower energy sources
that are combined to satisfy the requirement that
the component activities sum to the whole data.
In our experience, applying ICA decomposition
to 31-channel data typically yields 5–15 non-
artifactEEG components comparable with those
obtained from high-density recordings.

ICA practice

Example data

In the following sections, we will illustrate the ad-
vantages of using ICA to isolate EEG source ac-
tivities in multi-channel data. In these examples,
we will use data from a single subject performing a
standard ‘two-back’ working memory task. The
subject was presented with a letter (B, H, J, C, F,
or K) at roughly 1500-ms intervals, and responded
to each letter by pressing one of two buttons using
his or her their right or left thumb, respectively, to
indicate whether the current letter was the same as
(match) or different from (non-match) the letter
that had been presented two back in the sequence.
At each letter offset, an auditory feedback stimu-
lus indicated whether the subject response was
correct or incorrect. Letter presentation duration

was adjusted after each trial block to induce per-
formance to be as close as possible to 75% correct.

Correct responses each earned the subject 1
point, while incorrect responses cost 1 point. At
the end of the experiment, the volunteer subjects
were paid a 1b (US) bonus for every point ac-
crued. Total bonus money earned was in the range
of $10 (US) in addition to the regular hourly rate
of compensation. To introduce occasional height-
ened experience of reward and punishment, on
10% of the correct and incorrect trials, respec-
tively, upward and downward gliding tones, re-
spectively, were delivered to indicate that the
number of points earned or lost on that trial were
five times as large as usual. Thus, infrequent ‘bo-
nus’ signals added 5 points, while infrequent ‘pun-
ishment’ signals lost 5 points from the subject
point total, which was displayed on the subject
screen between task bouts.

Figure 1 illustrates typical results of ICA decom-
position performed on 1917 s of 100-channel EEG
data digitized with 24-bit resolution at 256Hz. The
top half of the figure displays EEG data from a
subset of the 100 electrodes over the course of 15 s,
while the bottom half of the figure shows the (‘ac-
tivation’) time courses of several ICs during the
same period. The gray bars show when a letter was
displayed on the computer screen. Vertical colored
lines indicate the type of auditory performance
feedback signal delivered at each letter offset.

During the illustrated data period, the subject
blinked after each performance feedback signal (as
clearly revealed by the time courses and scalp
maps for IC1 and IC3, and as visible in several
frontal scalp channels). Other types of EEG arti-
facts were also isolated by ICA, including left
temporal scalp muscle activity (IC55) and cardiac
pulse artifact (IC12). ICA found several ICs pre-
dominantly projecting to posterior scalp with a
peak in the (8–12Hz) alpha band (e.g., IC5 and
IC8), as well as at least three ICs with spectral
peaks in the (4–7Hz) theta band (IC4, IC6, and
IC7). Alpha peak components tend to be associ-
ated with scalp maps suggesting projection of one,
or else of two symmetric equivalent dipole(s) (see
Section ‘‘Example data’’) in posterior brain, while
frontal components typically have a mean spectral
peak in the theta range.
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Figure 1 also shows the concatenated average
event-related potential (ERP) waveform time (the
mean for all 308 letter presentations) locked to
visual letter onsets for IC5. Although the ERP is
convenient to summarize event-related data, com-
parison of its waveform with that of the unaver-
aged IC5 activity provides a dramatic example of
how the average ERP captures little of the actual

process activity. In particular, the IC5 alpha bursts
that regularly follow letter offsets in this time span
are nearly absent from the ERP because, though
they clearly follow most stimulus presentations,
they are not precisely phase locked to letter onsets
(i.e., the phase of their alpha activity, relative to
stimulus onset, varies near randomly). Thus, these
large alpha activity bursts are not prominent in the

Fig. 1. Fifteen seconds of EEG data at 9 (of 100) scalp channels (top panel) plus simultaneous activities of 9 (of 100) independent
components (ICs, bottom panel). While nearby electrodes (upper panel) record highly similar mixtures of brain and non-brain
activities, ICA component activities (lower panel) are temporally distinct (i.e., maximally independent over time), even when their scalp
maps are overlapping — compare, e.g., IC1 and IC3, accounting for different phases of eye-blink artifacts produced by this subject
after each visual letter presentation (gray background) and ensuing auditory performance feedback signal (colored lines). Compare,
also, IC4 and IC7, which account for overlapping frontal (4–8Hz) theta-band activities appearing during a stretch of correct per-
formance (7 through 15 s). Typical ECG and EMG artifact ICs are also shown, as well as overlapping posterior (8–12Hz) alpha band
bursts that appear when the subject waits for the next letter presentation (white background). For comparison, the repeated average
visual-evoked response of a bilateral occipital IC process (IC5) is shown (in red) on the same (relative) scale. Clearly the unaveraged
activity dynamics of this IC process are not well summarized by its averaged response — a dramatic illustration of the independence of
phase-locked and phase-incoherent activity.
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average ERP waveform, having been removed
from it by phase cancellation.

Component source modeling

Although each EEG channel recording is associ-
ated with a specific location on the scalp, as we
have seen, electrode locations are at best quite
crude indicators of the locations of even the
strongest underlying cortical sources. Thus, EEG
recordings are typically and traditionally con-
sidered to have ‘low spatial resolution.’ The stand-
ard approach to EEG source localization is to
directly attempt inverse modeling of EEG source
locations from one or more observed scalp poten-
tial distributions. However, since nearly all re-
corded EEG scalp maps sum activities from
multiple brain and non-brain sources, this has ap-
peared to be a nearly intractable problem.

Originally, some researchers hoped that the
number of active EEG sources could be mini-
mized by computing the average scalp distribution
at some latency or latencies following significant
task events, reasoning that all but one EEG proc-
ess might be cancelled out during response-locked
averaging. Unfortunately, more than one cortical
EEG process reacts to a stimulus, and further re-
search has shown that such ERP averaging can
only isolate activity from a single brain area if it is
the earliest responder to a sensory event. In gen-
eral, the changes in EEG dynamics induced by
significant events quickly involve several cortical
areas (Klopp et al., 2000).

ICA decomposition, however, offers a new and
more promising approach to solving the EEG in-
verse problem — namely, performing inverse
modeling of the individual IC scalp maps them-
selves. The simplest ‘realistic’ EEG inverse model
attempts to match each observed scalp map with
the best-fitting projection pattern of a single active
equivalent dipole placed in a 3-D head model at
some location and orientation (Scherg and Von
Cramon, 1985). Applying such standard inverse
source modeling methods to the IC scalp maps
from the example session of Fig. 1, using a best-
fitting four-shell spherical head model, we found
single equivalent dipole models for about 20 ICs

whose scalp projection patterns adequately fit the
observed IC maps (e.g., with no more than 15%
residual variance between the IC scalp map and
the dipole scalp projection).

Figure 2 illustrates the scalp projections (W$1)
of nine ICs from one subject linked to the loca-
tions of their respective best-fitting equivalent di-
poles in a common 3-D (Talairach) brain space.
The indicated percent residual variance specifies
the percent difference between the scalp projection
of the model dipole and the actual IC scalp map.
For all nine pictured ICs, median residual variance
was 2.8%. This is near to the minimum level of
error expected from imperfectly modeling the head
as a set of conductive spheres (representing brain,
pial surface, skull, and scalp). Each dipole is as-
sociated with a particular orientation that deter-
mines the pattern of its scalp distribution. For
example, IC7 is oriented radial to the scalp surface
(see the sagittal brain projection) and thus projects
most strongly to the forehead. The other end of
this dipole (e.g., the red end, in this depiction)
might project near the throat, but was not re-
corded by the electrode montage used in this ex-
periment. In contrast, IC5 can be accurately
modeled (with residual variance near 1%) only
using two occipital dipoles with bilaterally sym-
metric locations and roughly tangential orientat-
ions with respect to the scalp surface, thus
simultaneously contributing both positive and
negative potentials to the scalp recordings.

If an IC scalp map cannot be well modeled by a
single dipole, we typically do not attempt to model
it. However, when an IC scalp map appears to be
bilaterally symmetrical, it may be reasonably
modeled by two dipoles symmetrically located in
left and right hemispheres, though possibly with
differing dipole orientations. An example of this
situation is illustrated by IC5 in Fig. 2. This source
configuration might arise from (1) synchronous
evoked responses in left and right visual cortices in
response to central visual stimuli and/or (2) syn-
chronized alpha-band activity bi-directionally cou-
pled through dense callosal connections. In the
latter case, it might be possible to observe ICs
generated in other pairs of cortical areas also bi-
directionally coupled by dense white matter tracts,
e.g., the arcuate fasciculus that connects frontal
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cortex to the ipsilateral temporoparietal junction,
though we do not yet have convincing evidence
confirming this possibility.

In general, ICs tending to account for most
event-related dynamics are likely to be dipolar (or
eye artifacts), whereas non-dipolar and noisy-
appearing components tend to make little contri-
bution to event-related dynamics (unpublished
observations). Non-dipolar ICs may represent ac-
tivity that does not fit the ICA spatial stationarity
assumption, or may represent mixtures of small
and inconsistent sources. Given the reasonable
presumption that the total number of quasi-inde-

pendent brain and non-brain sources (mostly quite
small) may be unlimited, whereas the number of
scalp channels is limited, some ICs will contain
information from more than one source. However,
in our experience, such components tend to ac-
count for relatively little of the recorded EEG sig-
nals, and even less of the time or time/frequency
domain event-related dynamics.

Modeling ICs using single or bilateral equivalent
dipole models not only helps localize activities of
interest to a particular brain region; it is also a
convenient way to assess and visualize the spatial
homogeneity of clusters of functionally similar or

Fig. 2. Independent component scalp maps modeled as single dipolar sources. The location and orientation of dipoles within the head
model determine the theoretical scalp projection of the dipole’s electric field. For the nine IC scalp maps pictured here (from the
decomposition shown in Fig. 1), there is a median 2.8% residual variance between the IC scalp map (W$1) and the model projection of
the best-fit equivalent dipole, likely close to the error inherent to fitting sources within a spherical head model. Thus, each of the IC
scalp maps pictured (except IC5) are highly compatible with a cortical source domain consisting of a single cortical patch of unknown
extent. IC5 is well modeled by two dipoles located symmetrically across the occipital midline and is likely tightly coupled through the
corpus callosum.
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equivalent IC processes across subjects (see Sec-
tion ‘‘Do different subjects have equivalent ICs?’’).
However, more advanced methods of distributed
source modeling incorporating structural informa-
tion from subject MR head images, should be still
more informative.

Practical considerations

Decomposing EEG data by ICA is relatively
straightforward, though the quality of the results
is highly dependent on two major factors. First,
the number of time points of n-channel data used
in the decomposition must be sufficient to learn
the n2 weights in the (n! n) ICA unmixing matrix.
Technically, the number of independent degrees of
freedom in the data is a more relevant (though less
accessible) measure of data quantity than the
number of time points per se, and is always lower
than the number of time points since the data are
not white. As a rule of thumb, at comparable data
collection rates the amount of data needed for a
‘clean’ decomposition is related to the number of
electrodes squared (i.e., the number of weights)
times a factor, k. In our experience (and for our
data and procedure), when the number of elec-
trodes is relatively high k may need to be 25 or
larger. But to perform a full-rank (256-compo-
nent) decomposition with k ¼ 25 would require
2562! 25 ¼ 1,638,400 or more data points. At a
256-Hz sampling rate, this would require nearly
2 h of data. (Note that our k ¼ 25 rule of thumb
may depend on algorithm, data quality, frequency
range, etc).

For smaller numbers of channels, the amount of
data required should be much smaller. For exam-
ple, for one quarter the number of channels (64),
only a 16th the amount of data (%7min) would be
required to give the same k factor. However, ICA
decompositions using still more data (k425) tend
to be more regular and produce more dipolar
component maps. Thus, more data is better — so
long as the EEG source locations do not shift. For
example, jointly decomposing data from awake
and sleeping conditions might not be optimal if the
EEG source locations in these portions of the data
differed.

Second, the universal rule of signal processing,
‘garbage in, garbage out’ (GIGO), applies to ICA
decomposition as well. Two classes of artifacts
must be considered to decide what constitutes un-
desirable (‘garbage’) data for ICA. EEG artifacts
arising from eye movements, eye blinks, and mus-
cle tension have stereotyped scalp projections
(since the positions of the eyes and muscles do
not change throughout the session), although eye
movements in different directions, or blinks of
each eye separately, etc., may introduce multiple
scalp projection patterns into the data and thus
require more than one IC to account for their ar-
tifacts.

Another class of artifacts is more problematic
for ICA decomposition. These include large mus-
cle movements such as clenching the jaw, talking,
swallowing, clearing the throat, or scratching the
scalp. Because these activities involve many muscle
groups and possible electrode movements, the
scalp potential maps they create are likely to be
unique, so their inclusion in data submitted to ICA
could require as many ICs to separately model
their large- amplitude activities. Even when a large
number of channels and ICA dimensions, are
available, relatively few ICs will then be left to
account for independent cortical sources of inter-
est. Therefore, it is important to remove such ‘ir-
regular’ artifact periods from the data before final
decomposition.

Artifact prototypes

One of the simplest applications of ICA to EEG
data is to remove stereotyped artifacts from the
data. As mentioned above, eye blinks are highly
spatially stereotyped and are usually separated
into one or more ICs that together neatly account
for the entire eye-blink artifact. Once a component
has been identified as artifactual, it may be re-
moved from the data by reversing the ICA linear
unmixing process. To remove the activity of the kth

IC from the data, simply replace the entire kth row
of the component activation matrix U with
zeros and then multiply the modified activation
matrix, Uk0, by the ICA mixing matrix W$1.
Else, equivalently, the map weights for unwanted
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components in W$1 may be zeroed. The resulting
back-projected data will be the same size and units
as the original data matrix, though its intrinsic di-
mensionality (or ‘rank’) will have been reduced by
one and the data will no longer contain activity
from IC k.

The process of determining whether an IC ac-
counts for an artifact or a cortical process may in
many cases be simple for the trained eye, but typ-
ically requires some evaluation of its activity pat-
tern. Figure 3 demonstrates two types of data we
use to determine whether an IC accounts for cor-
tical or artifact activity. Each panel shows the ac-
tivity power spectrum (left) and the actual activity
time course in the single experimental trials (right)
of four ICs from the same session as Figs. 1–3.
Panel A shows a typical spectrum of eye-blink ac-
tivity, consisting of relatively high power at low
frequencies and no spectral peaks. This subject
blinked consistently following each stimulus pair
(A, right). While this is unusual, and so cannot be
considered a criterion for eye-blink identification,
it was not unreasonable behavior for a subject in
this demanding task. Eye blinks are one of the
easiest types of components to recognize by scalp
map alone because (assuming the electrode mon-
tage includes sites below as well as above the eyes)
the scalp map of a blink-related IC will be nearly
identical to that shown in panel A.

Panel B displays properties of another common
type of EEG artifact, sporadic muscle tension in
scalp or neck muscles. This is usually well modeled
by ICA. Unlike eye-blink components, muscle
component scalp maps vary depending on the
muscle they represent. The equivalent dipole for a
muscle component is oriented parallel to, and ide-
ally within the scalp, and the component scalp
map exhibits a sharp polarity reversal at the mus-
cle’s point of insertion into the skull (e.g., the shift
from red to blue in the scalp map in panel B).
Muscle component spectra typically have highest
power at frequencies above 20Hz. Other frequen-
cies may be present (as, here, near 10Hz), though
the most prominent feature of electromygraphic
(EMG) activity is the dominant power in the
gamma range. Muscle tension is typically not
maintained throughout an entire experiment, in-
stead tending to switch on and off for stretches of

time (likely without explicit awareness of the sub-
ject). As an illustration, a red bar to the right of
the ERP-image plot in panel B indicates a block of
trials when this muscle’s activity was relatively
quiet. Thus, ICs accounting for muscle activity
may be identified using multiple criteria and sub-
sequently removed from the rest of the data, if
desired.

For comparison, panels C and D display data
from two types of cortical IC processes with strong
alpha (C) and theta (D) rhythms, respectively, as
indicated by the strong spectral peaks in their ac-
tivity spectra. Furthermore, the ERP-image plots
(right) (Makeig et al., 1999; Jung et al., 2001) of
the activities of these components in single trials
show consistent patterns of activity time-locked to
experimental stimuli of interest. Other criteria can
be used to determine which ICs are putative cor-
tical components, such as the fit of each IC scalp
map to a best-fitting single (or sometimes bilateral)
dipole model (see Section ‘‘Example data’’). The
estimated location of an IC can be another helpful
tool for discovering whether or not a component
explains artifact activity. For example, eye blink
and muscle ICs will typically localize outside of the
brain volume (given a reasonably good co-regis-
tration between the head model and the actual
electrode locations).

ICA applications

Time-domain analysis of IC activities

Traditionally, EEG analysis has focused on the
averaged scalp potentials in relation to a time-
locking event. These average ERPs are interpreted
as if they captured the relevant event-related EEG
activity. It is important to realize that evoked po-
tentials, even at relatively early latencies, sum pro-
jections to the scalp of the net activities in many
EEG sources that survive averaging. In addition,
ERPs capture only the portions of the single-trial
signals that are both time-locked and phase-locked
to the set of time-locking events. Often, this may
be only 1% of the single-trial activities. It cannot
be concluded from this that the other 99% of the
recorded signal that does not survive averaging is
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Fig. 3. Power spectra and ERP-image plots of single-trial activities time locked to auditory feedback stimuli for four selected
independent components (ICs). (A) Eye blinks create high power at low frequencies and characteristic blink-like deviations in single
trials that may (as here) or may not be regularly time-locked to experimental stimuli. (B) Muscle tension (here, in a left temporal
muscle) is associated with high power above 20Hz.The roll-off of power above 40Hz here was produced by 50-Hz low-pass filtering of
the original data. Note the absence of this muscle’s activity during the middle portion of the experiment (red bar on right). (C and D)
IC processes accounting for cortical EEG activity during cognitive tasks typically show a mean spectral peak in either the (8–12Hz)
alpha band (posterior ICs) or (4–7Hz) theta band (anterior ICs), and produce both phase-locked evoked and phase-random induced
spectral responses to significant stimuli (C). They may also exhibit partial phase resetting of their ongoing activity at their characteristic
frequencies (D).
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unaffected by the time-locking events. In particu-
lar, event-related modulation of the power spec-
trum in one or more parts of cortex may occur
which is generally time-locked to the time-locking
events but whose signal phase distribution with
respect to event onsets at relevant frequencies is
random. Measuring such event-related modula-
tions in signal spectral power can be accomplished
using time/frequency analysis.

Time/frequency analysis of IC activities

As the red trace in Fig. 1 (above) shows, and con-
trary to naı̈ve assumptions often gradually accrued
in the minds of researchers who come to view data
averages as if they were the data themselves, the
averaged evoked response typically retains little of
the complexity of the event-related EEG dynamics
that follow (or, sometimes, anticipate) significant
events in cognitive task paradigms. As Pfurtschel-
ler and Aranibar (1977) realized over 25 years ago,
changes in amplitude of EEG oscillations time-
locked but not phase-locked to a set of similar
events are not evident in ERP averages. Pfurtschel-
ler’s event-related desynchronization (ERD) and
later synchronization (ERS) measures capture
mean event-related dynamics of oscillatory activ-
ity in a selected narrow band (originally, the
alpha band).

In 1993, the senior author generalized this anal-
ysis to consider a wider range of frequencies at
once, producing a mean latency-by-frequency im-
age, the event-related spectral perturbation
(ERSP) image (Makeig, 1993). The time/frequency
measures and equivalent 2-D images we call ER-
SPs reveal the frequencies and latencies when
mean changes in log power occur from some mean
power baseline, time-locked to a class of experi-
mental events. Subtracting log mean baseline
power (or equivalently, dividing mean power by
mean baseline power and then taking the log of the
result) measures how strongly mean, event-related
power at different frequencies either increased or
decreased relative to the baseline spectrum. This
normalization models spectral perturbations by
multiplicative influences by which ongoing activity
is either augmented or reduced near experimental

events. Converting to (log) dB scale after taking
means regularizes the measure, avoiding extreme
negative values that would be produced by taking
the log of individual power spectra containing
near-zero values. The normalization also mini-
mized the dominance of low frequencies in cortical
EEG (see Fig. 3, left column), making a common
color scale applicable for all frequencies.

When interpreting ERSP images, it should be
remembered that an ERSP is a statistical
measure–the mean of a distribution of single-trial
time/frequency transforms. EEG activity at both
source and scalp levels is typically highly variable
from second-to-second and trial-to-trial. Thus, a
mean event-related increase at some frequency by,
say, 6 dB does not typically imply that a constant
train of oscillatory activity at that frequency con-
tinues following the event, only doubled in ampli-
tude. More likely, either the frequency of
occurrence of bursts at that frequency doubles
following the events in question, or the mean am-
plitude of the bursts doubles — or some combi-
nation of the above. In fact, the mean change in
log power revealed by the mean ERSP may be
small compared with the ongoing variability in the
recorded EEG power from trial-to-trial. In gen-
eral, trial-mean measures (including ERPs and
ERSPs) do not characterize the variability of the
quantity measured, nor other aspects of its distri-
bution across trials — for this, further analysis is
required. Arguably, understanding the place and
function of the trial-to-trial variability may give
more insight into dynamic brain function than
measuring smaller mean changes across trials. For
this, however, new analysis methods are required
(Onton et al., 2005a).

The purpose of computing (log) mean ERSPs is
to identify stable features of the event-related data.
However, all features of a computed ERSP may
not be equally stable or reliable across sessions or
subjects. To estimate which ERSP features are
significant, we have implemented non-parametric
testing using data permutation methods to create
distributions of surrogate data whereby statistical
significance of the observed mean changes can be
evaluated (Delorme and Makeig, 2004). Specifi-
cally, for each time/frequency point we generate a
distribution of pseudo or surrogate data points in
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which all features of the actual data except one are
preserved. For example, to assess the significance
of a non-zero ERSP value at a given time/fre-
quency point, we could repeatedly shuffle the late-
ncies in a selected time window from each trial
used in the mean ERSP computation, thereby col-
lecting a distribution of some hundreds of surro-
gate mean ERSP values representing random
variations in mean spectral power at the selected
frequency that occurred during the trials.

If the actual mean ERSP value at the time/fre-
quency point is found to be outside the distribu-
tion of surrogate values (e.g., for po0.01, outside
its 99% percentile), then the observed mean ERSP
difference at this time/frequency point may be said
to differ significantly from expected power fluctu-
ations at this frequency in the data. That is, there
is likely to be some influence at the selected latency
that increases (or decreases) power at this fre-
quency. It is important, of course, to recognize the
problem of multiple comparisons when interpret-
ing results of permutation tests. For example, at a
pixel significance threshold of pp0.01, 1% of even
random data transforms should be expected to be
marked as ‘significant.’

To test the significance of differences between
mean ERSPs in two conditions across a group of
subjects, one may simply shuffle the assignments
of ERSPs to the two conditions and make a dis-
tribution of surrogate mean difference ERSPs
whose limits at each time/frequency point define
the bounds of expected variation of the ERSP
contrast of interest (Blair and Karniski, 1993). For
comparing ERSP features across subjects, a com-
putationally simpler though possibly less reliable
method of evaluating the reliability of the ob-
served ERSP differences is to quantify the number
of significant power perturbations at a given time/
frequency point for all subjects, and then to reject
observed differences whose significance across sub-
jects is less than a pre-defined binomial probability
level. This procedure often yields strong signifi-
cance levels that minimize the chance of significant
results arising simply from the problem of multiple
comparisons.

Analysis of both scalp channel data and IC ac-
tivities shows that in many cases, the EEG sources
contributing to ERP features may be the same as

those contributing to concurrent event-related
power (ERSP) changes. Further, ICA spatial fil-
tering reveals that oscillatory activity of EEG
source processes contributing to average ERPs is
usually only partially phase reset (or, alternatively,
phase locked or phase constrained) relative to the
time locking events (Makeig et al., 2002). That is,
mean spectral amplitude shifts and degrees of
phase locking at various frequencies and latencies
with respect to events of interest form a multi-
dimensional space of possibilities for event-related
dynamics of cortical source processes (Makeig et
al., 2004a). That is, ERP features and event-related
spectral power shifts or perturbations are usually
not, in fact, distinct phenomena. Instead, each
present a limited view of more complex event-re-
lated brain dynamics that involve changes in both
spectral power and phase at one or more frequen-
cies (Makeig et al., 2004a). Naturally, their appli-
cation to data recorded at single scalp channels
confounds the multiple and often partially cancel-
ing contributions of the underlying EEG sources,
thus complicating the interpretation of event-re-
lated phase consistency in scalp channel records.

Another specific pitfall of both ERP and ERSP
analysis is that the typically flat pre-stimulus ‘base-
line’ of average ERPs and ERSPs suggests that the
activity captured in the ERP or ERSP is produced
by cortical sources that are silent (ERP) or active
in some steady state (ERSP) before the events of
interest. Neither average ERPs nor average ERSPs
are sufficient measures of event-related dynamics
unless all the single-trial data exhibit the same
source dynamics plus other (‘noise’) processes that
are unaffected by the events of interest — an as-
sumption that a recent detailed analysis, shows to
be inadequate (Onton et al., 2005). In general, the
sources of ongoing EEG activity isolated by ICA
show highly variable activity patterns in pre-stim-
ulus periods, and complex transformations of their
joint amplitude and phase statistics following sig-
nificant stimuli in event-related paradigms.

A next important step in ICA analysis of EEG
data is to analyze the IC activity (or ‘activation’)
time courses themselves. This involves, first, per-
forming an ICA decomposition of data of
adequate quantity and quality to yield physiolog-
ically plausible components. Next, physiologically
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plausible ICs should be selected for detailed anal-
ysis. Typically a workable criterion is that the IC
be reasonably well fit by a single (or bilateral)
equivalent dipole(s) (e.g., within %15% residual
variance; see Section ‘‘Example data’’) and that
this dipole be localized inside the head volume. If a
dipole cannot be fit to an IC scalp projection, then
the homogeneity of its activity may be questioned.
As mentioned in Section ‘‘Practical considera-
tions’’, ICs that also express physiological rhythms
such as alpha or theta activities are likely to rep-
resent both anatomically and functionally distinct
cortical source activities (though Fig. 3B shows a
counterexample).

Note, however, that IC activities represent the
result of instantaneous and therefore broad-band
filtering of the scalp data. Each IC activation time
series apparently represents the synchronous por-
tion of activity within one (or sometimes two
linked) patches of cortex, and should therefore have
a broad colored-noise spectrum with or without
single or multiple spectral peaks. If multiple peaks
are present, higher peaks may represent harmonics
of lower-frequency peaks (e.g., harmonics of alpha
or theta rhythms arising from the non-sinusoidal,
more triangular wave shape of the oscillatory ac-
tivity), and/or bursts of unrelated higher-frequency
activity interspersed between periods of dominant
frequency activity (Onton et al., 2005).

Figure 4 directly compares time/frequency anal-
ysis for a mid-frontal scalp channel and for three
contributing ICs. It makes visible the ambiguities
inherent in time/frequency analysis of scalp channel
data alone. Panels A and E show the ERSP and
inter-trial coherence (ITC) images, respectively, for
a frontal midline scalp channel indicated by the
gray disc on the model head. Here, artifacts includ-
ing vertical and lateral eye movements, pulse arti-
fact, and muscle activity were removed from the
data before time/frequency transformation. The
side panels display ERSP and ITC images for three
dipolar components contributing to the channel
ERSP, as shown by the relation of the channel lo-
cation (gray disc) to each of the IC scalp maps.

The ERSP transform of the frontal channel data
(A) is quite similar in pattern to that of IC5 ac-
tivity (D), though the blocking of (10-Hz) alpha-
band activity in this bilateral occipital component

is stronger (%12 dB vs. %6 dB). In contrast, the
small event-related alpha power increase (ERS) of
mid-frontal component IC7 (B) is not visible in the
channel data transform (A). Further, the post-
stimulus increase in theta-band activity of mid-
frontal IC4 (C) is not visible in the scalp channel
data transform (A). Either another theta-band
component activity projecting to this channel may
have decreased during this time interval, thus bal-
ancing the increase in IC4, or the summed mixture
of many source activities at the scalp channel had
more trial-to-trial variability, making the alpha
increase from IC7 insignificant in the channel data.
Figure 4 illustrates that not only scalp channel
ERSP measures may be blind to some of the ER-
SPs in the underlying cortical sources, but also
they may suggest incorrect conclusions about
source locations. Here, the strongest IC contribu-
tor to this frontal electrode ERSP is in fact from an
occipital source. Thus, results of time/frequency
analysis applied to single-channel data should also
be interpreted with caution.

In itself, the average ERP says nothing about
the portion of the energy in the whole EEG signal
that it captures. ITC, first introduced as ‘phase-
locking factor’ by Tallon-Baudry et al. (1996), is a
measure of trial-to-trial phase consistency at each
frequency and latency relative to a set of time
locking events. Its theoretic range is from 0 (uni-
form phase distribution across trials) to 1 (identi-
cal phase in each trial). Most EEG processes
contributing to ERPs do so via partial rather than
complete phase locking, i.e., with an ITC 51. In
Figure 4, the marked theta-band ITC differences
between the contributing ICs are unavailable in
the scalp channel ITC. As with scalp channel
ERSP analysis, scalp channel ITC measures may
mask differences in underlying phase consistency
of the distinct cortical source activities whose pro-
jections are mixed at the scalp electrodes.

Comparing IC activities across subjects

Do different subjects have equivalent ICs?

In exchange for the benefits that ICA offers
to EEG analysis in both spatial and temporal
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resolution of separable source-level activities, it
also introduces a new level complexity into EEG
analysis. In traditional scalp channel signal anal-
ysis, clustering of event-related EEG phenomena
across subjects is straightforward, as each scalp
electrode is assumed to be comparable with results
from equivalently placed electrodes for the all
subjects. Comparing ICA results across subjects,
in contrast, requires that, if possible, ICs from
different subjects should likewise be grouped into
clusters of ICs that are functionally equivalent de-
spite differences in their scalp maps.

If clustering ICs across subjects seems like an
imprecise process, it should be considered that
data recorded at a single-scalp channel within

each subject is heterogeneous, so 5the idea of
grouping channel activity across subjects may also
be a risky proposition. In particular, clear phys-
ical differences between subjects in the locations
and, particularly, the orientations of cortical gyri
and sulci mean that even exactly equivalent cor-
tical sources may project, across subjects, with
varying relative strengths to any single-scalp
channel location, no matter how exactly repro-
duced across subjects. Thus, the basic assumption
in nearly all EEG research, that activity at a given
scalp location should be equivalent in every sub-
ject, is itself questionable. In contrast, changing
the basis of EEG evaluation from scalp channel
recordings to IC activities necessitates an extra

Fig. 4. Comparison of average event-related spectral power (ERSP) and inter-trial coherence (ITC) measures time-locked to letter
onsets in the two-back task, at a single frontal midline scalp channel (A and E, center) and for three ICs projecting to this channel
(ERSP: B–D; ITC: F–H). Green portions of the ERSP and ITC images are non-significant (p40.01) by surrogate data testing. ERSP
and ITC measures of event-related IC signal dynamics represent different aspects of event-related perturbations of ongoing oscillatory
activity. Component ERSP and ITC features may conceal differences in the summed contributions of different sources to individual
scalp channels, as is the case here, for both theta and low-alpha band power and phase locking. The far left panels of A–D (green
traces) show the mean component activity spectra, and the lower panels (blue and green traces) show the maximum and minimum
spectral power perturbations. The green and blue traces of the left panels in E–H show the mean and maximum ITC values at each
frequency, while the lower panels in F–H show the activity ERPs.
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step compared with channel analysis — that of
combining and/or comparing results across sub-
jects through identifying equivalent IC processes,
if any, in their data.

Approaches to IC clustering

The process of identifying sets of equivalent ICs
across subjects, or even across sessions from the
same subject, can proceed in many ways depend-
ing on the measures and experimental questions of
interest. An appealing approach to clustering ICs
is by their scalp map (W$1) characteristics. Such
clustering can be attempted by eye, by correlation,
or by an algorithm that searches for common fea-
tures of IC scalp maps. The disadvantage of this
method is that, as shown in Fig. 2, slight differ-
ences across subjects in the orientation of equiv-
alent dipoles for a set of equivalent ICs can
produce quite different IC scalp maps.

Clustering ICs based on the 3-D locations of
their equivalent dipoles may avoid this problem.
Using this method, it is possible to describe typical
event-related or other activities in cortical areas of
interest, or at least in cortical areas with sufficient
density of IC equivalent dipoles across subjects or
sessions. Common clustering algorithms such as
K-means and other distance-based algorithms can
be used to cluster ICs based on the 3-D locations
of their equivalent dipoles quickly and easily.
However, clustering on estimated cortical location
alone may introduce similar confounds as cluster-
ing by scalp channel location, since subjects may
have multiple types of IC processes in the same
general cortical regions.

For one, comparing cortical locations across
subjects raises the same spatial normalization
questions as arise in functional magnetic reso-
nance imaging (fMRI) analysis. Since brain shapes
differ across subjects, true comparison of 3-D
equivalent dipole locations should be performed
only after spatially normalizing each set of subject
IC locations to his or her normalized individual
structural MR brain image. This requires MR im-
ages to be obtained for each EEG subject, a re-
quirement that may greatly increase the resources
required for EEG data acquisition.

A simpler method normalizes the 3-D equivalent
dipole locations via normalizing the subject head
shape, as learned from the recorded 3-D locations
of the scalp electrodes, to a standard head model.
When 3-D electrode location information is not
available, the expected functional specificity of
equivalent dipole clusters based on estimated equiv-
alent dipole locations in a standard head model
must be reduced. In this case, some IC processes
estimated to be located in the same cortical area
may not express the same functional activities. De-
spite this drawback, our results show that clustering
component dipole locations in a standard spherical
head model still allows for meaningful conclusions
about differences in regional EEG activities across
one or more subject groups, assuming sufficient
statistical testing is applied to the data, and the
limitations of the analysis are acknowledged.

Because homogeneity of an IC cluster is most
accurately assessed and characterized by the ac-
tivities of its constituent ICs, a more direct route to
obtaining functionally consistent clusters may be to
group ICs from experimental event-related studies
according to their event-related activity patterns.
For example, a recent EEG/fMRI study (Debener
et al., 2005) clustered components contributing
most strongly to the event-related negativity
(ERN) feature of the average ERP time-locked
to incorrect button presses in a speeded choice
manual response task. Remarkably, the authors
showed that trial-to-trial variations in the strength
of the activity underlying the ERN correlated with
changes in the fMRI blood oxygen level-depend-
ent (BOLD) signal only in the immediate vicinity
of the equivalent dipole source for the component
cluster. In some cases, therefore, clustering ICs on
similarities in their ERP contributions can be a
simple but powerful approach to discovering
sources of well-documented ERP peaks.

If the measure of primary interest is not the av-
erage ERP but, instead, the average ERSP meas-
uring mean event-related fluctuations in spectral
power of the ongoing EEG across frequencies and
latencies, then component ERSP characteristics
may similarly be used as a basis for IC clustering.
Given a small number of subjects and a simple
experimental design, it might be possible to group
component ERSPs across subjects by eye, though
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this quickly becomes discouraging as the number
of subjects and/or task conditions rise. In any case,
an objective approach is more desirable.

As an example, let us consider data from the
same two-back task described earlier and illustrated
for one subject. Assume there are 20 subjects, each
with a mean of 15 dipolar cortical ICs. To prepare
the data, each 2-D (latencies, frequencies) compo-
nent ERSP image for one or more task conditions
(correct and incorrect) must be concatenated and
then reshaped into a 1-D (1, latencies! frequen-
cies! conditions) vector. Thereafter, the vectorized
component ERSPs from the 20 subjects can be
concatenated to form a large 2-D matrix of size
(]ICs, latencies! frequencies! conditions) or, in
this case, (300, latencies! frequencies! conditions).
A number of options are now available.

A simple approach is to use standard clustering
algorithms such as K-means to cluster on Euclidean
distances between the rows of the component ma-
trix, whose dimensionality can be made manageable
by preliminary PCA reduction. It is also possible to
combine dissimilar IC activity and/or location
measures in computing component ‘distance’ meas-
ures. The open source EEG analysis toolbox (EEG-
LAB, http://www.sccn.ucsd.edu/eeglab) includes a
clustering interface that implements this method.
The ICACLUST facility enables component clus-
tering across subjects or sessions using a variable set
of IC features: ERPs, ERSPs, scalp maps, mean
spectra, and/or equivalent dipole locations.

Figure 5 illustrates preliminary clustering results
on 368 near-dipolar ICs from 29 subjects perform-
ing the two-back task described earlier. In the fig-
ure, equivalent dipoles of the same colors were
clustered by computing a Euclidean ‘distance’
measure between the concatenated average com-
ponent ERSPs time-locked to auditory feedback
tones signaling ‘correct’ and ‘wrong’ responses, as
well as the significant ERSP difference between the
two, and also 3-D dipole location of each IC. The
ERSPs plotted for each cluster represent the
means over all the cluster components, after zero-
ing out spectral perturbations not significant
(po0.00001) by binomial probability across the
set of clustered components.

Note that although IC equivalent dipole loca-
tions were here only a portion of the data used in the

clustering, ICs with similar event-related activity
patterns proven to be naturally associated with dis-
tinct cortical regions. From the ‘difference’ activity
(A, light blue) central midline cluster, it is clear that
this cortical area produced a different activity pat-
tern following wrong responses, namely a 400-ms
theta band burst that began before the auditory
feedback during the period of the motor response.
This result is in line with our previous findings (Luu
et al., 2004; Makeig et al., 2004b), and neatly re-
produces the recent result of Debener et al. (2005)
who used time-domain analysis of simultaneous
EEG and fMRI data to show that trial-to-trial
variations in post-error activity of a very similarly
located IC cluster were correlated with trial-to-trial
variations in fMRI BOLD signal only directly be-
low the cortical projection of the component clus-
ter, and highly coincident with the location of the
equivalent dipole cluster in Fig. 5.

ERSP and equivalent dipole locations for three
other activity-derived but spatially ‘tight’ compo-
nent clusters are shown in Fig. 5. IC clusters lo-
cated in/near left and right hand somatomotor
cortex (B, yellow and C, magenta, respectively)
exhibited significantly stronger alpha activity for a
half-second after receiving Correct feedback than
after receiving Wrong feedback, as confirmed by
permutation-based statistical testing. Analysis of
responses to matching versus non-matching letters
(not shown) revealed the expected dominance of
spectral perturbations contralateral to the actual
response hand. Finally, event-related perturbat-
ions in spectral power in the bilateral occipital (D,
green) IC cluster differed little following Correct
versus Wrong feedback.

In contrast, the same clustering of ICs on dipole
locations, condition ERSPs, and ERSP differences
produced two more spatially diffuse and highly
overlapping occipital dipole clusters (red and
blue). Although the spatial distributions of these
two clusters cannot be distinguished, the difference
ERSPs between the two clusters do differ. Much
like the left somatomotor (yellow) cluster, compo-
nents in the blue cluster exhibit increased alpha
activity following Correct auditory feedback. Of
course, interpretation of the clustered component
activities is a problem separate from clustering.
However, once successful clustering of IC activities
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Fig. 5. Clustering ICs from 29 subjects by common properties of their mean event-related activity time courses can be an efficient
method for finding homogeneous groups of independent processes across sessions or subjects. Here, ICs were clustered by similarities
in 3-D dipole location as well as features of their mean ERSPs time-locked to auditory performance feedback signals within two task
conditions (following Correct and Wrong button presses) and by the significant ERSP difference (when any) between them (this
significance estimated by non-parametric binomial statistics, po1e$5). Colored spheres show the locations of the equivalent dipoles
for the clustered components. Colored lines connect these clusters to the respective cluster-mean ERSP and ERSP-difference images.
Although IC equivalent dipole locations were only a portion of the data used in the clustering algorithm, the equivalent dipole models
for four of the obtained clusters (A–D) are spatially distinct. Two other, spatially intermingled clusters (E–F) illustrate how activity-
based clustering can differentiate spatially similar components that would not be separated in clustering based on location alone.
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has been accomplished, meaningful conclusions
about brain function may be approached with
more confidence.

Summary and conclusions

This review is intended to provide an overview of
how ICA is currently applied to EEG data de-
composition and to time/frequency analysis of
EEG data in particular. As we have tried to illus-
trate through sample results and explanations,
ICA is a powerful tool for EEG analysis. Because
of the numerous cortical EEG sources, as well as
the considerable variety of stereotyped non-brain
EEG artifacts, experimental results for either av-
eraged or unaveraged scalp channel data are in-
herently ambiguous and may become even more so
when data are pooled across subjects.

Nearly 11 years after the utility of ICA for EEG
analysis was first discovered by the senior author
and colleagues (Makeig et al., 1996), quite a few
EEG researchers have accepted ICA as an effective
method for removing stereotyped data artifacts in-
cluding eye blinks and lateral eye movements, mus-
cle activities, electrode or line noise, and pulse
artifacts. ICs accounting for and isolating these ar-
tifacts can be recognized easily. The value of sep-
arately studying the scalp maps and activity time
courses of the non-artifact cortical components ex-
tracted by ICA from high-density EEG data is still
less generally understood or adopted. We hope,
however, that the benefits of this approach to EEG
(and MEG) analysis will gradually be more under-
stood, particularly as student researchers explore
their own data using freely available analysis tools
such as are being made available in EEGLAB or
other available analysis environments.

We have discussed briefly how scalp channel av-
erage ERPs, long enjoying a starring role in psy-
chophysiological research, are in fact composed of
signals from many cortical (as well as artifactual)
sources. Without a method for spatially filtering the
scalp-channel data to separate the underlying source
signals, they must be summed and thus confounded
in scalp channel averages. In fact, a peak in a scalp
channel ERP may not occur at a time point at
which any of the contributing cortical signals actu-

ally reach a peak. This point is important to keep in
mind when specific labels for ERP peaks (N100,
P100, etc.) are supposed to represent latencies when
some ‘thing’ occurred in the subject’s brain. In fact,
in most cases ERP peak latencies are only moments
at which the sum of the means of the underlying
cortical source signals create a net peak in their
summed scalp potentials. In addition, it is well-
demonstrated by research employing event-related
spectral measures that ERP peaks often do not cor-
respond to moments when mean EEG power peaks,
either at the scalp channels or at the cortical sources.

While event-related average ERD and ERS, and
more generally ERSP measures provide more in-
formation about event-related EEG dynamics
than is available in average ERP measures, these
spectral power measurements are subject to similar
spatiotemporal confounds as ERPs. A single-scalp
electrode receives projections from many cortical
areas, thus spectral power measures are the result
of arbitrary summation and cancellation of dis-
tinct source signals. Similarly, event-related aver-
age ITC measures can be highly affected by source
mixing, as was the case in Fig. 5 where the strength
of event-related ITC in at least one of the con-
tributing IC processes was underestimated in the
ITC computed at a supervening scalp channel.

Inevitably, with the added benefits of ICA come
some additional complexity and inconvenience. This
complexity, however, reflects the actual and likely
irreducible complexity both of the brain itself and of
the recorded EEG signals. This complexity cannot be
reduced, but instead only hidden and/or confounded
by modeling the data using simpler measures.

Chief among the problems introduced by ICA
decomposition is the issue of how to cluster ICs
across subjects and/or sessions. This is an evolving
research area that will likely become more widely
explored as researchers discover new ways of work-
ing with independent signal components. Our own
results in this direction have convinced us that
component clustering, when successfully accom-
plished, can increase the amount, consistency, and
utility of information about macroscopic event-re-
lated brain dynamics that can be extracted from
high-dimensional EEG (or other electromagnetic)
brain signals (Makeig et al., 2002, 2004b; Delorme
and Makeig, 2003; Onton et al., 2005). We look
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forward to the results that will come from next
decade of research in this direction and beyond.
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